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An outstanding question in the evolution of gene expression is the composition of the underlying regulatory architecture and the pro-
cesses that shape it. Mutations affecting a gene’s expression may reside locally in cis or distally in trans; the accumulation of these 
changes, their interactions, and their modes of inheritance influence how traits are expressed and how they evolve. Here, we interro-
gated gene expression variation in Caenorhabditis elegans, including the first allele-specific expression analysis in this system, capturing 
effects in cis and in trans that govern gene expression differences between the reference strain N2 and 7 wild strains. We observed ex-
tensive compensatory regulation, in which opposite effects in cis and trans at individual genes mitigate expression differences among 
strains, and that genes with expression differences exhibit strain specificity. As the genomic distance increased between N2 and each 
wild strain, the number of genes with expression differences also increased. We also report for the first time that expression-variable 
genes are lower expressed on average than genes without expression differences, a trend that may extend to humans and 
Drosophila melanogaster and may reflect the selection constraints that govern the universal anticorrelation between gene expression 
and rate of protein evolution. Together, these and other observed trends support the conclusion that many C. elegans genes are under sta-
bilizing selection for expression level, but we also highlight outliers that may be biologically significant. To provide community access to our 
data, we introduce an easily accessible, interactive web application for gene-based queries: https://wildworm.biosci.gatech.edu/ase/.
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Introduction

Gene expression is an essential step in the translation of genotype 
to phenotype. Thus, to understand the evolution of traits and gen-
omes, we need to elucidate the regulatory mechanisms, modes of 
inheritance, and biological processes shaping gene expression 
variation within a system. Mutational variants that affect gene ex-
pression may act in cis, locally within the focal gene haplotype, 
such as promoter variants, and or in trans, on a separate molecule 
and potentially affecting all targets, such as mutations in tran-
scription factors (Signor and Nuzhdin 2018). Regulatory variants 
that mediate gene expression may represent adaptive change, 
neutral differences, or relaxed selection (reviewed in, e.g. 
Landry, Lemos, et al. 2007; Fay and Wittkopp 2008; Romero et al. 
2012; Signor and Nuzhdin 2018, 2019; Hill et al. 2020; Price et al. 
2022a). They may also act to stabilize expression by dampening 
changes to expression induced by other variants.

An incisive way to study gene expression regulation is to exam-
ine variation by simultaneously capturing expression among wild 
strains and their F1 hybrid offspring (Wittkopp et al. 2004; Landry, 
Hartl, et al. 2007). Within the F1, expression differences observed 
between the parental alleles (allele-specific expression [ASE]) 

may be assigned to mutations in cis, on the same molecule, be-
cause the diffusible trans environment is shared within cells 
(Cowles et al. 2002; Yan et al. 2002). Thus, comparisons of expres-
sion between alleles, between parents, and between F1s and par-
ents enable inference of the regulatory architecture and 
inheritance mode of gene expression (Wittkopp et al. 2004; 
McManus et al. 2010). This approach has been employed in a num-
ber of systems to interrogate various phenomena, including do-
mestication, adaptation, and speciation in wild and crop plants 
(Zhang and Borevitz 2009; He et al. 2012; Lemmon et al. 2014; 
Steige et al. 2015; He et al. 2016; Verta et al. 2016; Rhone et al. 
2017; Steige et al. 2017; Bao et al. 2019); adaptation and the evolu-
tion of embryogenesis in Drosophila (McManus et al. 2010; Coolon 
et al. 2014; Juneja et al. 2016; Cartwright and Lott 2020); speciation 
and cis regulatory variation in mice (Crowley et al. 2015; Mack et al. 
2016); human-specific regulatory evolution in chimpanzee–hu-
man hybrid cell lines (Gokhman et al. 2021; Starr et al. 2023; 
Wang et al. 2024); RNA and protein regulation in yeast (Artieri 
and Fraser 2014; Muzzey et al. 2014; Wang et al. 2015); and speci-
ation and evolution of reproductive mode in nematodes 
(Sanchez-Ramirez et al. 2021; Xie et al. 2022; Viswanath and 
Cutter 2023).
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Caenorhabditis elegans has long been a leading developmental 
and genetic model organism (Sternberg et al. 2024), and the recent 
establishment of a global collection of wild strains has pushed C. 
elegans to the forefront of quantitative genetics and evolutionary 
genomics research (Frézal and Félix 2015; Cook et al. 2017; 
Crombie et al. 2019; Andersen and Rockman 2022; Crombie et al. 
2024). Yet, while the genetic basis of expression variation has 
been interrogated via well-powered eQTL studies (Rockman et al. 
2010; Vinuela et al. 2010; Francesconi and Lehner 2014; Kamkina 
et al. 2016; Evans and Andersen 2020; Zhang et al. 2022), the regu-
latory architecture and inheritance mode of gene expression vari-
ation in C. elegans has not been assessed by allele-specific 
analyses. However, the biology of C. elegans offers rich opportunity 
for investigating gene expression variation and its evolution, be-
yond its well-established resources. C. elegans strains persist as 
predominantly selfing lineages in diverse ecological habitats 
across the globe, with the population structure exhibiting a spec-
trum of genetic divergence between wild strains, from closely re-
lated to highly diverged (Barriere and Felix 2005a; Barriere and 
Felix 2005b; Crombie et al. 2019; Lee et al. 2021; Crombie et al. 
2024). The genomes harbor extensive linkage disequilibrium, in-
cluding long haplotypes arising from historical adaptive sweeps, 
and interstrain crosses often exhibit fitness deficits, suggesting 
disruption of the selfed, coadapted genotype combinations 
(Barriere and Felix 2005a; Dolgin et al. 2007; Rockman and 
Kruglyak 2009; Andersen et al. 2012). Thus, C. elegans is optimally 
suited to facilitate investigations into whether and how genetic di-
vergence translates to differences in expression, into the scope 
and correlates of compensatory interactions in the evolution of 
gene expression regulation, and into the broader evolutionary 
pressures shaping these trends.

The role of compensatory interactions in the evolution of gene 
expression is incompletely understood, but a growing body of lit-
erature suggests that such dynamics are influential and perva-
sive. Gene expression changes often fail to result in protein-level 
changes (Schrimpf et al. 2009; Khan et al. 2013; Brion et al. 2020; 
Buccitelli and Selbach 2020) and regulatory changes to expression 
arising in cis often fail to produce overall differences in gene ex-
pression, implying that they are compensated by regulation in 
trans (Landry et al. 2005; Signor and Nuzhdin 2018, 2019). 
Studies have reported such compensation of cis-regulated differ-
ences in hybrids of different species, subspecies, and occasionally 
strains of fruit flies, sticklebacks, cotton, mice, yeast, spruce, and 
more (Landry et al. 2005; McManus et al. 2010; Goncalves et al. 2012; 
Coolon et al. 2014; Verta et al. 2016; Metzger et al. 2017; Signor and 
Nuzhdin 2018, 2019; Bao et al. 2019; Verta and Jones 2019). In yeast, 
dissection of the trans regulatory architecture of a single gene es-
timated hundreds of variants mediating its expression, with ex-
tensive compensatory interactions and evidence of stabilizing 
selection on overall expression level (Metzger and Wittkopp 
2019). However, methodological constraints and analytical arti-
facts can limit confidence at both protein and RNA levels, hinder-
ing widespread inferences (Fraser 2019; Buccitelli and Selbach 
2020; Fraser 2022; Price et al. 2022a; Price et al. 2022b). In C. elegans, 
fitness-related traits exhibit compensatory-like architecture, with 
epistasis and tightly linked opposite-direction effects shaping fer-
tility and fecundity (Noble et al. 2017; Bernstein et al. 2019); these 
traits may be governed by similar dynamics at the level of gene ex-
pression. Overall, the extent to which C. elegans gene expression 
has evolved compensatory interactions remains an open 
question.

Here, to elucidate the regulatory architecture and evolutionary 
dynamics shaping gene expression in C. elegans, we examine 

expression variation in 7 intraspecific crosses. In each, the refer-
ence strain N2 was crossed to 1 of 7 wild strains representing a 
spectrum of genomic differentiation from the reference. We de-
fine the regulatory patterns and inheritance modes of expression 
variation in this system and then assess how regulatory effects are 
influenced by factors such as nucleotide diversity, genome evolu-
tionary history, gene essentiality and biological role, and expres-
sion level.

Materials and methods
Experimental methods
A detailed protocol describing the experimental methods is 
available at protocols.io (dx.doi.org/10.17504/protocols.io.5jyl8p15 
rg2w/v1, Bell et al. 2024).

Worm strains
Supplementary Table 1 provides the complete list of strains used 
in this study. In selecting parental strains to cross with the N2 la-
boratory reference strain to generate F1s in which to investigate 
ASE, we aimed to represent the range of nucleotide diversity pre-
sent in the species as well as capture outlier strains. All chosen 
strains differed at more than 127,000 nucleotides from N2 (>1.27 
variants per kilobase average) (per CaeNDR, Crombie et al. 2024) 
to ensure that the F1s harbored many genes with differences 
from the reference in coding regions. To ensure that we generated 
F1s with 1 copy of the genome from each parent, rather than N2
self-progeny, we used the N2 strain feminized via a deletion of 
fog-2 as the N2 “female” parent (referred to in the text as N2fog-2, 
strain CB4108): fog-2-deficient hermaphrodites are incapable of 
producing sperm and therefore function as females (Schedl and 
Kimble 1988; Hodgkin 2002).

Worm husbandry
We thawed fresh aliquots of each wild strain and grew them with-
out starving for at least 3 generations, but for no more than 1 
month, prior to starting the experiment. We followed standard 
protocol (Stiernagle 2006) for worm culture, using 1.25% agarose 
plates to prevent wild strains’ burrowing. Prior to the start of the 
experiment, all strains were maintained at 18°C to allow slower 
growth of large quantities of worms and to avoid inducing 
QX1211s mortal germline phenotype, which is more penetrant 
at higher temperatures (Frezal et al. 2018).

Generating parallel F1 crosses and self-progeny
As detailed in our protocol (Bell et al. 2024), we first bleach syn-
chronized all parental strains to ensure that the parents that 
would be mated were of similar developmental stage, as parental 
age can impact offspring development and transcriptional pro-
gram (Perez et al. 2017; Webster et al. 2025). To ensure that we 
would have many L4 parent worms to move to mating plates, 
we grew several plates of all bleached strains at 18, 19, and 20°C 
and additionally grew the N2fog-2 parent (from whom we needed 
the highest number of worms) at room temperature.

After allowing these worms to grow for 2 days, we generated 
mating plates by placing 60–80 N2fog-2 L4 pseudohermaphrodites 
onto each of 5 6-cm plates with small bacteria spots and added 
40 L4 males of the appropriate strain to each plate. We concur-
rently moved 80 individual L4 hermaphrodites to each of 3 
6-cm plates for each parental strain (N2 and 7 wild strains) to 
simultaneously generate the parental strains used for sequencing 
from self-matings, while the F1 crosses were generated from 
cross-matings.
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After allowing mating for 48 h, we collected and synchronized 
the offspring for the crosses and self-matings by collecting all par-
ental worms and embryos from the bacterial lawn, treating with 
bleach, and allowing embryos to develop into L1 larvae and arrest 
over 30 h in liquid buffer. After 30 h, L1s were transferred directly 
to the bacterial lawn of 6-cm plates at a density of ∼400 L1s per 
plate.

After allowing the worms to develop for ∼36 h, we removed 
males from the F1 plates as soon as they were detectable and 
screened the parental plates for any spontaneously generated 
males, which were also removed. Plates used for RNA sequencing 
(at least 3 per strain) had all males removed as L4s or young 
adults.

Worm harvesting
Worms were harvested as day 1 reproductively mature young 
adults: when most worms were gravid with embryos and laid em-
bryos were visible on the plates. Because developmental timing 
differs across wild strains (Hodgkin and Doniach 1997; Gems 
and Riddle 2000; Harvey and Viney 2007; Poullet et al. 2015; 
Stastna et al. 2015; Zhang et al. 2021), we chose to match develop-
mental stage rather than hours of development; even so, all 
worms reached reproductive maturity and were harvested within 
3 h of each other. Worms were rinsed off plates, washed with M9 
buffer, and resuspended in TRIzol (Invitrogen #15596026) in 3 
tubes (replicates) per strain before immediate flash freezing in li-
quid nitrogen and storage at −80°C until RNA extraction.

RNA library preparation and sequencing
RNA was extracted from worms stored in TRIzol (Invitrogen 
#15596026) following standard procedure (following He 2011, see 
Bell et al. 2024) using a TRIzol (Invitrogen #15596026) chloroform 
(Fisher #C298-500) extraction and RNeasy columns (Qiagen 
#74104). This extraction was performed in 3 batches of 15 over 2 
consecutive days, with 1 replicate from each strain included in 
each batch. RNA was stored at −80°C for ∼1 wk prior to library gen-
eration. Library preparation and sequencing for all samples were 
performed by the Molecular Evolution Core Laboratory at the 
Georgia Institute of Technology. Following RNA quality checks 
(all RINs 9.8 or greater), mRNA was enriched from 1 μg RNA with 
the NEBNext Poly(A) mRNA magnetic isolation module (NEB 
#E7490) and sequencing libraries generated using the NEBNext 
Ultra II directional RNA library preparation kit (NEB #E7760) 
with 8 cycles of PCR. Libraries were quality checked and fluoro-
metrically quantified prior to pooling and sequencing. Libraries 
were sequenced on an Illumina NovaSeq X using a 300 cycle 
10B flowcell. A median of 65 million 150 × 150 bp sequencing 
read pairs were generated per library (range 25–93 million, 
Supplementary Table 1).

Analytical methods
The code written for this study is available at https://github.com/ 
paabylab/wormase.

Expression quantification
Before expression quantification, we generated strain-specific 
transcriptomes as described previously (Bell et al. 2023) by insert-
ing known SNV and INDEL polymorphisms (from the CeNDR 
(Cook et al. 2017; Crombie et al. 2024) 2021021 release hard-filter 
VCF) into the C. elegans reference genome (ws276 from 
WormBase, Sternberg et al. 2024) and extracting transcripts. We 
created pseudodiploid strain transcriptomes by combining these 
strain-specific transcriptomes for the 2 parent strains. Tools 

used in generating these transcriptomes included g2gtools 
(v0.1.31) (https://github.com/churchill-lab/g2gtools), gffread 
(v0.12.7) (Pertea and Pertea 2020), seqkit (v0.16.1) (Shen et al. 
2016), and bioawk (v1.0) (https://github.com/lh3/bioawk). For 
comparison purposes, we also created pseudodiploid and strain- 
specific transcriptomes using script create_personalized_transcripto-
me.py from the Ornaments code suite (initial version) (Adduri and 
Kim 2024) tool, with the ws286 genome build and 20220216 CeNDR 
VCF.

For quantification used in ASE and differential expression (DE) 
analyses, we estimated allele-specific and total RNA counts using 
EMASE (emase-zero v0.3.1) (Raghupathy et al. 2018) with input quan-
tifications generated by running Salmon (v1.4) (Patro et al. 2017) 
against the pseudodiploid transcriptomes. Specifically, we gener-
ated a salmon index for the diploid transcriptome using salmon index 
with options -k 31 −keepDuplicates (no decoy, all other parameters de-
fault). To prepare RNA-seq data for quantification, we trimmed 
Illumina adapters using trimmomatic (v0.39) (Bolger et al. 2014) 
with parameters ILLUMINACLIP: TruSeq3-PE-2.fa:1:30:12:2:True. 
Salmon quantification with equivalence class outputs saved was 
performed against the pseudodiploid transcript’s index with salmon 
quant -l ISR –dumpeq –fldMean < sample-specific mean > –fldSD <  
sample-specific SD > –rangeFactorizationBins 4 –seqBias –gcBias. 
Salmon outputs were converted to .bin inputs for emase-zero using 
alntools salmon2ec (v0.1.1) (https://churchill-lab.github.io/alntools/). 
Finally, emase-zero was run on this input using parameters –model 
4 -t 0.0001 -i 999. For comparison, we separately generated quantifi-
cation estimates using kallisto (v0.50.1) (Bray et al. 2016) against 
strain-specific transcriptomes generated by Ornaments and esti-
mated allele-specific RNA counts using ornaments quant (initial ver-
sion), which implements WASP (van de Geijn et al. 2015)-style 
allele-specific quantification on top of kallisto quantification and in-
cludes INDELs in its analysis. Workflows to perform these steps are 
in our code repository in internal directories: data_generation_scripts/ 
getdiploidtranscriptomes; data_generation_scripts/emase; data_genera-
tion_scripts/ornaments.

We used DESeq2 (v1.42.0) (Love et al. 2014) to obtain final RNA 
quantifications for downstream modeling. For DE analyses, we 
used the “total” column of the “gene.counts” output from emase- 
zero. For allele-specific analyses, we used the allelic counts col-
umns of the “gene.counts” output from emase-zero. For kallisto 
quantifications, transcript TPMs were combined to gene-level, 
normalized quantifications for DESeq2 using tximport (v1.30.0) 
(Soneson et al. 2015). In all cases, genes with at least 10 total 
reads summed across samples were retained for downstream 
analysis. For obtaining general best expression quantification 
estimates (rather than for DE modeling), we used DESeq2’s 
variance-stabilizing transformation (vst function) to get log-scale, 
variance-normalized, and length- and library size-normalized 
gene expression estimates.

Age estimation
We estimated each sample’s age in hours against a developmental 
timing “ruler” from the N2 strain via RAPToR (v1.2.0) (Bulteau and 
Francesconi 2022) using DESeq2’s vst-corrected gene counts from 
total emase-zero outputs. The age reference used (provided with 
RAPToR) was Cel_YA_2. The script used to perform this analysis 
is in our code repository: data_classification_scripts/RAPToR.R.

DE and ASE calling
Each sample was assigned to its generation-strain group 
(e.g. CB4856 F1). Total gene counts from emase-zero “total” 
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gene.counts output were binomially negatively modeled by 
DESeq2 as

log2(qij) = β1ixj + β2iyj 

where, for gene i, sample j, q is proportional to RNA concentration/ 
counts (Love et al. 2014) and βs give the effects for gene i for RNA 
extraction replicate (x) and each generation-strain pair (y). The 
Wald test was used for significance testing. The results were 
pulled out for each pairwise comparison of interest using 
DESeq2’s contrasts. All log2 fold changes (LFCs) were adjusted 
using ashr (v2.2-63) (Stephens 2016). For DE to be called, both a 
fold change (FC) of >1.5 after ashr adjustment (for significance 
testing and calling) and a genome-wide adjusted P-value of 
<0.05 were required.

For genes to be included in ASE analyses, we required them to 
have 5 gene and allele-specific alignments. The total counts of 
alignments per gene and those that were gene and allele-specific 
were derived by analyzing of salmon’s equivalence class output 
file, which assigns equivalence classes of kmers to transcripts 
from which they derive and gives the counts of reads aligning to 
each equivalence class. We investigated several thresholds of 
gene- and allele-specific alignments for considering a gene 
ASE-informative; we found that our RNA sequencing was deep en-
ough that once genes in each F1 genotype had more than 3 allele- 
and gene-specific alignments in each sample from that genotype, 
they usually had many allele- and gene-specific alignments. 
Therefore, we required genes to have a slightly conservative 5 allele- 
and gene-specific alignments to be considered ASE-informative.

To model ASE in the F1s, each allele’s count was represented in 
its own column in the model matrix. Within each strain, each 
sample was assigned its sample blocking factor, controlling for 
sample during modeling. We used DESeq2’s negative binomial 
modeling to model allele counts:

log2(qij) = β1ixj + β2ixjyj + β3izj 

where, for gene i, allele (rather than sample) j, q is proportional to 
allelic RNA concentration/counts (Love et al. 2014), β1 gives the ef-
fect of RNA extraction replicate (x), β2 gives the effect of the inter-
action between RNA extraction replicate and specific sample (xy), 
and β3 gives the effect of the allele/genotype (z). Library size cor-
rection was not used in this modeling because all comparisons 
were being made within sample, where library size was identical, 
and counts were of alleles rather than total. Library size correc-
tion was excluded by setting all DESeq2 size factors to 1 prior to 
DE testing. The results were extracted for each allelic pairwise 
comparison of interest and were used in downstream analysis 
for ASE-informative genes. ASE-informative genes were consid-
ered to have ASE if their ashr-adjusted FC was greater in magni-
tude than 1.5 (equivalent to having 60% of alleles come from 1 
haplotype) and their genome-wide-adjusted P-value was <0.05 
(the same thresholds required for DE calls; FC threshold used in 
both significance testing and calling). Both LFCs and the propor-
tion of alleles deriving from the reference and alternate genomes 
were used for downstream analytical interpretation; alternate al-
lele proportion was calculated from the ashr-adjusted LFC as

2LFC

(1 + 2LFC) 

The scripts used for these analyses are in our code repository: 
equivalence class processing for ASE-informative decisions in 

data_generation_scripts/salmonalleleeqclasses.py and ASE and DE 
modeling in data_classification_scripts/ase_de_annotategenes_deseq2_ 
fromemaseout.R.

Inheritance mode classifications
Inheritance mode categories were called from DE testing results 
(from global RNA counts); categories and definitions followed 
McManus et al. (2010) and others, with thresholds tuned for our 
specific statistical testing framework. All P-values were genome- 
wide adjusted and FCs/LFCs were ashr adjusted. Genes were called 
“no_change” if there was no DE between the parents, between the 
F1 and the N2 parent, or between the F1 and the other parent (all 
P > 0.05 or |FC| < 1.5). Genes were called “overdominant” if the F1 
had higher expression than both parents (FC > 1.5 and P < 0.05). 
Genes were called “underdominant” if the F1 had lower expression 
than both parents (FC < -1.5 and P < 0.05). Genes were called 
“N2_dominant” if the parents were differentially expressed and 
the F1 was potentially differentially expressed from the wild par-
ent in the same direction as N2 was (N2 vs wild strain |FC| > 1.5 and 
P < 0.05, F1 vs wild strain P < 0.05 and FC in the same direction as 
N2s), or if the parents were potentially differentially expressed 
and the F1 was differentially expressed in the same direction 
from the wild parent as N2 was (N2 vs wild strain P < 0.05 and 
FC in the same direction as F1s; F1 vs wild strain |FC| > 1.5 and 
P < 0.05). Genes were called “alt_dominant” the same way as 
N2_dominant but requiring the F1 to be differentially expressed 
from the N2 parent in the same way as its wild parent. Genes 
were called “additive” if the parent strains were differentially 
expressed (P < 0.05 and |FC| > 1.5) and the F1 had nominally 
called DE with expression amount falling between the 2 parents 
(P < 0.05, FC > 0 if parental FC > 0 and FC < 0 if parental FC < 0). 
Therefore, genes with midparental gene expression closer to the 
expression level of 1 parent or another, which might more formally 
be termed “nearly additive,” are included in the “additive” 
category. Genes whose DE results did not meet any of the above 
requirements were called “ambiguous,” for example, when 
parental DE was not called but the F1 had DE called from 1 parent 
(these genes might be either additively inherited or dominantly 
inherited, but the statistical evidence was not strong enough to 
discern which). The inheritance mode classification script is avail-
able in our code repository: data_classification_scripts/f1_parental_ 
inhmode_withinstrain.R.

Regulatory pattern and related classifications
Regulatory pattern categories were called from comparisons of 
ASE (N2 vs wild strain allele) calls and DE (N2 vs wild strain total 
RNA counts) calls; categories and definitions followed McManus 
et al. (2010) and others, with the specific thresholds tuned for 
our specific statistical testing framework. All P-values were 
genome-wide adjusted and FCs/LFCs were ashr adjusted, and ca-
tegorizations were only considered if genes were ASE-informative. 
Genes were called “conserved” if they had neither ASE nor DE 
(both allelic and strain-wise P > 0.05 and |FC| < 1.5). Genes were 
called “cis” (i.e. cis-only or cis-dominant regulatory divergence) 
if ASE and DE were both present and in the same direction and 
if their 99.9% C.I. on effect size overlapped (allelic P < 0.05 and 
|FC| > 1.5, strain-wise P < 0.05 without FC threshold, log2FC(DE)/ 
log2FC(ASE) > 0). Genes were called “trans” (i.e. trans-only or 
trans-dominant regulatory divergence) if they did not have ASE 
but did have DE (allelic P > 0.05, strain-wise P < 0.05 and |FC| >  
1.5). Genes were called “enhancing” (i.e. cis–trans enhancing or 
cis + trans) if they had both ASE and DE in the same direction 
and DE was of greater magnitude than ASE with nonoverlapping 

4 | A. D. Bell et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/230/4/iyaf110/8159564 by G

eorgia Institute of Technology user on 07 August 2025

https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110


99.9% C.I. of the ASE and DE estimates (ASE P < 0.05 and |FC| > 1.5 
and DE P < 1, or ASE P < 0.05 and DE P < 0.05 and |FC| > 1.5; and 
log2FC(DE)/log2FC(ASE) > 1). Genes were called “compensating” 
(i.e. cis and trans regulatory changes in opposite directions, with 
the cis effect larger than the trans effect) if they had ASE and DE 
in the same direction with larger ASE than DE and nonoverlapping 
99.9% C.I. on the ASE and DE estimates (0 > log2FC(DE)/ 
log2FC(ASE) > 1, allelic P < 0.05 and |FC| > 1.5 and strain-wise P <  
0.05 or allelic P < 0.05 and strain-wise P < 0.05 and |FC| > 1.5). 
Genes were called “compensatory” (i.e. cis and trans regulatory 
changes in opposite directions, with trans changes fully offsetting 
the cis changes) if there was ASE but not DE (allelic P < 0.05 and 
|FC| > 1.5, strain-wise P > 0.05). Genes were called “overcompen-
sating” (i.e. cis and trans regulatory changes in opposite directions, 
with the trans change more than offsetting the cis effect) if they 
had ASE and DE in different directions with nonoverlapping 
99.9% C.I. on the ASE and DE estimates (log2FC(DE)/ 
log2FC(ASE) < 0; allelic P < 0.05 and |FC| > 1.5 and strain-wise 
P < 0.05 or allelic P < 0.05 and strain-wise P < 0.05 and |FC| > 
1.5). Genes were called “ambiguous” if they did not meet the 
above criteria, e.g. when ASE and DE were called with overlap-
ping widened C.I. on opposite-direction effects. The regulatory 
pattern classification script is in our code repository: data_ana-
lysis_scripts/ase_de_cistransclassifications.R.

We simplified these regulatory patterns for ease of understand-
ing and visualization in a couple of ways. First, genes were classi-
fied as “cis–trans opposing” anytime they had opposite-direction 
cis and trans effects, i.e. when their regulatory pattern was “com-
pensating,” “compensatory,” or “overcompensating.” Second, we 
used the regulatory patterns to investigate compensation in a 
more targeted way, classifying genes as compensated if their sim-
plified regulatory pattern was “cis–trans opposing” and as not 
compensated if their regulatory pattern was “cis” or “enhancing.” 
Genes without cis regulatory changes therefore are neither com-
pensated or not compensated and were not included in 
compensation-specific analyses.

To evaluate the extent of compensatory regulatory effects, i.e. 
to assess whether individual genes showed an enrichment for ef-
fects in both cis and trans, and specifically for opposing effects in 
cis vs trans, we first considered the numbers of genes with only ef-
fects in cis (“cis” class), with only effects in trans (“trans”), with 
both cis and trans (“compensating,” “compensatory,” “overcom-
pensating,” and “enhancing”), and with no change (“conserved”). 
The distribution of these numbers across the 2 × 2 table was as-
sessed for significance using a Fisher’s exact test (FET)/hypergeo-
metric test. We also repeated this test excluding enhancing genes 
from the category of genes with both cis and trans effects (both 
were highly significant, all P < 2 × 10−112 and all P < 4 × 10−102, re-
spectively). To assess the enrichment of opposing effects within 
the set of genes that showed both cis and trans regulation, we 
used a binomial test (always 87–92% of genes with cis and trans 
effects had those effects oppose each other across strains). To as-
sess what proportion of genes called cis–trans opposing would 
have to be wrongly classified to result in the FET being not signifi-
cant (after Bonferroni-correction), we sequentially removed 1– 
100% of these genes from this category in 2 ways and then recom-
puted the FET. First, to simulate DE being missed at a gene, we 
took genes away from the cis–trans opposing group and added 
them to the cis-only group. Second, to simulate ASE being spuri-
ously called at a gene, we took genes away from the cis–trans 
opposing group and added them to the conserved group. In 
each such simulation, we computed the proportion of all called 
DE genes simulated as being missed and all called ASE genes 

simulated as being spurious and report these numbers in 
the main text where the FET was no longer significant. This 
analysis script is in our code repository: data_analysis_scripts/ 
compensationamounttesting.R.

Gene filtering
We performed all analyses including all nominally expressed 
genes, excluding genes overlapping hyperdivergent haplotypes 
or with aberrantly low or high DNA sequence coverage in the focal 
strain, and excluding all genes called hyperdivergent in any of 328 
strains analyzed by CeNDR (Lee et al. 2021). Focal strain gene 
haplotype hyperdivergence was inferred when the gene region 
overlapped any hyperdivergent haplotype in this strain in the hy-
perdivergent haplotype BED file from the CeNDR 20210121 release 
(Lee et al. 2021). Genes were flagged as having aberrantly low or 
high DNA sequence coverage if they had <0.3- or >2.5-fold the me-
dian gene’s coverage in that strain, with coverage calculated 
across all exonic bases from CeNDR DNA sequence BAMs 
(20210121 release), as described previously (Bell et al. 2023). The 
list of genes hyperdivergent in any strain population wide was 
from Lee et al. (2021).

Gene set enrichment analyses
We used WormCat (Holdorf et al. 2020) to perform gene set enrich-
ment analyses by writing a script extension to the WormCat R 
package (v2.0.1) that allowed us to provide a custom background 
gene set for enrichment tests. We performed the following tests 
with genes from each strain separately (formatted here as test 
gene set vs background gene set): DE genes vs all analyzed genes, 
ASE genes vs ASE-informative genes, compensatory genes vs 
ASE-informative genes, compensatory genes vs ASE genes, trans-
gressive (overdominant + underdominant) genes vs all analyzed 
genes, overdominant genes vs all analyzed genes, underdominant 
genes vs all analyzed genes, DE genes that are ASE-informative vs 
ASE-informative genes, ASE-informative genes vs all analyzed 
genes, N2-dominant genes vs all analyzed genes, wild dominant 
genes vs all analyzed genes, cis genes that were not called additive 
inheritance mode vs ASE-informative genes, and cis genes that 
were not called additive inheritance mode vs ASE genes. The 
WormCat extension and analysis scripts are in our code reposi-
tory: data_analysis_scripts/wormcat_givebackgroundset.R and data_ 
analysis_scripts/combinewormcatout_aseetc.R.

Meta-strain results: combined comparisons across strains
We performed all analyses within each strain/strain pair, and we 
also combined strains’ results into 1 “meta-strain” to be able to 
display and report 1 set of results when results across strains 
were largely consistent. For this meta-strain, genes were consid-
ered ASE-informative if they were ASE-informative in all 7 strains 
and not ASE-informative if they were not informative for ASE in 
any strain; genes had to be informative in all strains or not inform-
ative in any strain to be compared in informative-vs-not analyses. 
To compare ASE vs not, DE vs not, and regulatory pattern, genes 
informative in all strains were included for each strain: each 
gene is present on each plot 7 times, in the category of its classifi-
cation for each strain. For example, 1 gene might be called ASE in 3 
strains and not ASE in 4 strains and would be represented by 3 
points in the ASE group and 4 points in the non-ASE group. In 
some cases, other characteristics of the gene (such as essentiality, 
see below) were the same across strains and therefore represented 
identically 7 times, while in others (such as expression level, see 
below), both the ASE characterization and the other characteristic 
are different in each strain.
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Comparing to regulatory divergence between 
Caenorhabditis nigoni and Caenorhabditis briggsae
To determine how our estimates of regulatory divergence within 
C. elegans compare to the interspecies regulatory differences be-
tween nematode species C. nigoni and C. briggsae, we obtained 
the number of regulatory-diverged genes from the ASE analyses 
in Sanchez-Ramirez et al. (2021). In their df.cis_trans.inherit.mer-
ge.csv (https://github.com/santiagosnchez/competitive_mapping_ 
workflow/raw/refs/heads/master/analyses/tables/cis_trans_and_ 
expression_inheritance/df.cis_trans.inherit.merge.csv) dataset, 
10,502 genes had assigned regulatory patterns, and 8,653 (82.4%) 
of these had diverged regulation (cis, trans, or compensatory; am-
biguous excluded). These species differ at 20.7% of synonymous 
sites (Thomas et al. 2015), equivalent to a strain differing from N2
at 20,756,530 bp. We used these numbers allowed and our within- 
species C. elegans linear model to predict the proportion of 
regulatory-diverged genes between C. nigoni and C. briggsae and 
compare that to the observed proportion of regulatory-diverged 
genes and to genomic divergence.

Genome, population genetic, and gene essentiality metrics
Genes were assigned to chromosome region bins (centers, arms, 
tips) based on which region from Rockman and Kruglyak (2009)
contained the gene’s midpoint. Nucleotide diversity statistics 
population-wide pairwise segregating sites (π) and among- 
parental-pair proportion segregating sites p were calculated 
from the 20210121 hard-filter CeNDR VCF from biallelic SNVs 
only using PopGenome (v2.7.5) (Pfeifer et al. 2014). Nucleotide di-
versity (π) and Tajima’s D were also obtained from Lee et al. 
(2021), with their per-kb π per site converted to per-gene π per 
site by taking the median (missing data excluded) of all 1-kb win-
dows overlapping the gene ±500 bp. Tajima’s D, Fay and Wu’s H, 
and FST in non-Hawaiian and Hawaiian subpopulations were ob-
tained from Ma et al. (2021). When we had multiple sources for 
the same statistic, we tested all of them, finding that results 
were generally consistent across statistic source when they were 
internally consistent across strains and gene sets; we use π from 
Lee et al. (2021) in the figures in this study. Whether the gene fell 
in a haplotype with a selective sweep in N2 was inferred from 
the swept haplotype data from Lee et al. (2021). To assign genes 
as essential or not, we downloaded gene annotations including 
“RNAi Phenotype Observed” and “Allele Phenotype Observed” for 
all genes in the C. elegans genome from WormBase using 
SimpleMine (Sternberg et al. 2024). Genes with lethality or sterility 
phenotypes from RNAi or alleles were considered essential (spe-
cifically, we searched for “lethal” and “steril” in the “RNAi 
Phenotype Observed” and “Allele Phenotype Observed” columns). 
Scripts used for these analyses are in our code repository: data_ 
generation_scripts/nucdivcendr_geneswindows_allandasestrains.R, da-
ta_analysis_scripts/chrlocenrichment_asederpim.R, and data_analysis_ 
scripts/aseetc_vs_general.R.

Expression-level analyses
For comparing gene categories to the expression level of each 
gene, we used the average normalized expression level from the 
6 relevant parents in each cross. Specifically, kallisto quantifica-
tion estimates to strain-specific transcriptomes were length and 
library size normalized followed by variance-stabilizing trans-
formation (all via DESeq2) and then averaged across the appropri-
ate samples.

For analyses of human gene expression variability vs human 
gene expression level, we used the S4 dataset from Wolf et al. 

(2023), which comprises ranks of gene variation and expression le-
vel derived from principal components analysis of across-57- 
study correlation in gene expression variation and (separately) 
mean gene expression. Prior to this cross-study variance and level 
ranking, the authors corrected for the mean–variance relation-
ship of gene expression within each study. We performed correl-
ation tests on the input data as well as assigned genes to deciles 
of gene expression variability (1,313 or 1,314 genes per decile, 
13,139 genes in dataset), testing these deciles for differences in 
central tendency of gene expression level via ANOVA.

For analyses of Drosophila melanogaster gene regulatory pattern 
and variation vs expression level, we used data from 
Glaser-Schmitt et al. (2024). We obtained ASE, DE, tests of their dif-
ference, and regulatory pattern assignments for midgut and hind-
gut from Data S3 and Data S4 and raw gene counts from the 
related GEO repository (GSE263264). To generate normalized ex-
pression values to use in our analyses, we determined the length 
and GC content of each transcript in the D. melanogaster genome 
from the transcript FASTA from FlyBase (release FB2024_06) 
(Ozturk-Colak et al. 2024) and used the median across transcripts 
within a gene for the gene’s value. We corrected count data from 
all samples from the parent strains for length bias (highly rele-
vant) and GC bias (not very relevant in D. melanogaster) using R 
package cqn (v1.48) (Hansen et al. 2012) and then normalized to 
correct for library size and variance using DESeq2’s vst and 
normTransform functions. The point estimate for each gene’s ex-
pression was the mean across all parents’ normalized values in 
the specific cross; we did all comparisons with both vst and 
normTransform normalized data, which yielded qualitatively simi-
lar results. Downstream, we used normTransform data as it 
removed more of these data’s mean–variance correlation than 
did vst. To assign genes to regulatory patterns, we used 
Glaser-Schmitt et al. (2024)’s ASE and DE LFCs and their 
Cochran–Mantel–Haenszel test P-values comparing the parental 
and F1 allelic ratios and then followed our regulatory pattern as-
signment criteria without requiring a LFC threshold, as the origin-
al authors did not. Our regulatory pattern assignments were 
concordant with Glaser-Schmitt et al. (2024)’s except in cases 
where they had not taken directionality of effects into account 
and where we called genes as conserved if they did not have 
ASE or DE as called by DESeq2, even if they had a significant 
CMH based on underlying allelic ratios. Because patterns were 
consistent across strains, we plotted all strains’ results together. 
We focused our interpretations on genes with changed expression 
regulation as determined by their ASE and DE estimates and com-
parisons between them, as the threshold for ASE-informative 
genes was different enough between the studies to preclude com-
paring genes without called expression changes.

Scripts used in these analyses are in our code repository: data_ 
analysis_scripts/aseetc_vs_general.R, data_analysis_scripts/wolf2023 
humexpanalyses.R, and data_analysis_scripts/glaserschmitt_drosase_ 
meanexprvsaseetc.R.

General software tools used for analyses and figures
Tools used for specific analytical purposes are described in the 
relevant sections; here, we share tools used for general data pro-
cessing and figure creation.

Analysis scripts were largely written in R (v4.3.2) (R Core Team 
2023), with a few written in Python (v3.7) (www.python.org). 
Workflow scripts were written and run using Nextflow (v22.10.7) 
(www.nextflow.io). Compute-intensive analyses and workflows 
were run via the Partnership for an Advanced Computing 
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Environment (PACE), the high-performance computing environ-
ment at the Georgia Institute of Technology.

General data wrangling R packages used included data.table 
(v1.14.99) (Dowle and Srinivasan 2022), argparser (v0.7.1) (Shih 
2021), and formattable (v0.2.1) (Ren and Russell 2021). R packages 
used for data display and figure creation included ggplot2 (v3.5.1) 
(Wickham 2016), cowplot (v1.1.2) (Wilke 2020), eulerr (v7.0.2) 
(Larsson and Gustafsson 2018), ggforce (v0.4.1) (Pedersen 2022), 
ggVennDiagram (v1.2.3) (Gao 2021), ggsignif (v0.6.4) 
(Ahlmann-Eltze and Patil 2021), and ggpmisc (v0.5.6) (Aphalo 
2024). Color schemes were developed using RColorBrewer 
(v1.1-3) (Neuwirth 2022) and Paul Tol’s color palettes (https:// 
personal.sron.nl/∼pault/).

Results
An experiment to reveal extent and mode of gene 
expression variation in C. elegans
To interrogate intraspecific gene expression variation in C. elegans, 
we captured expression differences among the reference strain 
N2 and 7 wild strains. We estimated pairwise differential expres-
sion (DE) between each wild strain and N2, as well as allele-specif-
ic expresssion (ASE) in the F1 offspring of each strain crossed to N2
(Fig. 1a; Supplementary Table 1). ASE analyses are uniquely sensi-
tive at identifying cis regulatory changes (Cowles et al. 2002; Yan 
et al. 2002; Wittkopp et al. 2004), and analyzed in conjunction 
with DE of parental strains, they can reveal the regulatory pattern 
and inheritance mode of gene expression across the genome 
(Fig. 1b). The 7 wild strains were chosen to represent a range of nu-
cleotide divergence from N2 and spanned the species’ genetic di-
versity: EG4348; DL238; CB4856 (“Hawaii”); ECA722; QX1211; and 
ECA701 and XZ1516, 2 extremely diverged strains (Fig. 1c).

To maximize power and limit confounding effects, we con-
ducted the experiment in 1 batch, generating young adult selfed 
offspring of the parental strains simultaneously with their cross 
offspring with N2 (Fig. 1a, see ‘Materials and Methods’). Replicate 
RNA-seq samples clustered in gene expression space, indicating 
true differences between strains and generations (principal com-
ponents analysis, Supplementary Fig. 1). To analyze these gene 
expression data for signatures of DE and ASE, we developed a 
framework that (1) minimized reference bias, wherein sequence 
reads from the reference genome have higher rates of alignment 
than reads from the nonreference genome (Degner et al. 2009), 
(2) equivalently handled strains and genomes with varying levels 
of difference from each other while minimizing differences in 
power among strains as much as possible (Supplementary Note 1), 
and (3) generated comparable estimates of expression differences 
among strains (DE) and between alleles within the F1s (ASE), enab-
ling direct comparison (see ‘Materials and Methods’). Although the 
wild strains exhibit a substantial span in their genetic differenti-
ation from the reference, we observed no reference bias; the pro-
portion of reference alleles called per gene was tightly centered 
around 50% for all strains (Fig. 1d). To estimate DE among strains, 
we analyzed 18,647 genes with nominal expression (those with 10 
or more total reads observed across samples). To detect ASE within 
the F1 hybrids, transcripts must carry genomic variant(s) that dis-
criminate between the parental genotypes, so not all expressed 
genes permit ASE analysis. The genes informative for ASE com-
prised 22–53% of all nominally expressed genes; the proportion 
scales with genetic difference from N2 (Fig. 1e). In this manuscript, 
we refer to these as “ASE-informative” genes.

Here, we present the insights derived from these gene expres-
sion data for all C. elegans genes, including those in hyperdivergent 

haplotypes (Lee et al. 2021; Moya et al. 2025), as global trends per-
sisted across different gene inclusion criteria (see ‘Discussion’).

Modes of gene expression inheritance include 
transgressive variation
Of all analyzed genes, 26% exhibited DE within at least 1 cross, 
either between the parental strains or between generations 
(Fig. 2). To evaluate how these expression changes were inher-
ited, we compared, for each gene, the expression of the F1 off-
spring to each of its parents (McManus et al. 2010): we classified 
genes for which the F1 exhibits the same expression as one par-
ent but different expression from the other as “N2 dominant” or 
“alt dominant” (wild strain dominant); genes with expression 
intermediate to the parents as “additive”; and genes with expres-
sion significantly higher or lower in the F1 than in both parents 
as transgressive, either “overdominant” or “underdominant” 
(Fig. 2a; Supplementary Fig. 2; see ‘Materials and Methods’). Each 
cross exhibited genes with each inheritance classification 
(Fig. 2b), including overdominant and underdominant trans-
gressive expression. Across strains, transgressive genes com-
prised 0.2–0.6% of all genes and 0.9–7.2% of genes with 
unambiguous expression changes. These transgressive genes 
are of outsized interest: expression values beyond the range of 
the parents may contribute to hybrid dysfunction and eventual 
speciation, and may help to explain outbreeding depression 
in C. elegans (Renaut et al. 2009; Gomes and Civetta 2015; 
Sanchez-Ramirez et al. 2021).

To determine whether expression of functionally related genes 
tends to be inherited the same way within and across strains, we 
performed gene set enrichment analyses (Supplementary Fig. 3) 
(Holdorf et al. 2020). Genes with transgressive expression were 
heavily and consistently enriched for collagen genes relative to 
all other categories (Fig. 2c). Yet, the pattern of expression varied 
by gene and by strain. Some collagen genes were lower expressed 
in the F1 than in either parent in all strains, with either idiosyn-
cratic intermediate expression in the wild parent (e.g. col-81) or 
consistently high expression in both parents (e.g. dpy-5) (Fig. 2d). 
Strain XZ1516 often showed unique patterns, suggesting its colla-
gen network may be strain-specifically regulated. At least some of 
the expression variation in collagen genes likely originates with 
the N2 genotype, which participated in each cross; N2 carries a de-
rived mutation that modifies the phenotypic penetrance of cuticle 
mutations commonly used as markers in lab work (Noble et al. 
2020). However, the differences by gene and expression patterns 
across strains suggest that collagen genes may be especially evo-
lutionarily labile within this species, consistent with earlier work 
suggesting their rapid evolution and expression differentiation 
(Cutter and Ward 2005; Denver et al. 2005). Collagen genes interact 
in complex networks to form the worm cuticle (Higgins and Hirsh 
1977; Cox et al. 1980; Kramer 1994; McMahon et al. 2003), and path-
way architecture, including redundancies, may facilitate func-
tional diversification across strains.

Regulatory patterns reveal extensive cis–trans 
compensation within gene expression variation
We next sought to elucidate how expression differences are regu-
lated in cis vs trans. For each ASE-informative gene, we compared 
the allele-specific difference in expression, which must occur in 
cis, to the expression difference between the parents, which 
may arise from regulation in cis, trans, or both (McManus et al. 
2010). We classified genes with similar magnitude ASE and DE 
as regulated largely or solely in cis (“cis” category); genes with 
DE but no ASE as “trans”; and genes with DE exceeding ASE as 

C. elegans allele-specific expression | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/230/4/iyaf110/8159564 by G
eorgia Institute of Technology user on 07 August 2025

https://personal.sron.nl/~pault/
https://personal.sron.nl/~pault/
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf110#supplementary-data
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00006690?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00005835?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00004602?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00006534?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00031279?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00006513?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00040687?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf110#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf110#supplementary-data
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf110#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyaf110#supplementary-data
https://identifiers.org/bioentitylink/WB:WBGene00000657?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBGene00001067?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00040687?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110
https://identifiers.org/bioentitylink/WB:WBStrain00000001?doi=10.1093/genetics/iyaf110


“enhancing.” Genes with ASE but no or lower-magnitude DE re-
flect cis differences that are compensated by opposite-effect regu-
lation in trans, producing either an incomplete offset of the cis 

effect (“compensating”), a complete offset (“compensatory”), or 
an opposite effect exceeding the change in cis (“overcompensat-
ing”) (Fig. 3a; Supplementary Fig. 4; see ‘Materials and Methods’). 

a

b

c

d e

Fig. 1. Interrogating gene expression variation in wild C. elegans. a) Experimental regime. b) The 3 expression-level comparisons from this experiment. 
Left: ASE is estimated from per-allele, allele-specific read quantification within each set of F1s. Center: comparison of total RNA amounts between 
parental strains yields DE estimates. Comparisons of ASE and DE enable determination of regulatory pattern of expression differences. Right: comparison 
of total RNA amounts between the F1 and its parents enables inference of inheritance mode of each gene’s expression. c) Genetic similarity of the strains 
in this study. White indicates haplotypes containing variants private to this strain in the entire population, whereas colors show haplotypes shared with 
at least one other strain in the population. Specific color denotes the first strain in this study in which the given haplotype was observed; the same color 
shows that haplotype as identical-by-descent with at least one other strain in the entire population (haplotype identity-by-descent data from Lee et al. 
2021). d) Proportion reference alleles in each ASE-informative gene’s RNA-seq (see Supplementary Table 2 for all gene ns). e) The relationship between 
number of ASE-informative genes (see main text) to the genome divergence between the wild parental strain and reference genome N2.
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This classification regime operates equivalently across strains, 
enabling interstrain comparisons. Importantly, this method 
avoids a common pitfall wherein the influences of cis and trans ef-
fects are artifactually negatively correlated (Supplementary Note 
2; Fraser 2019; Zhang and Emerson 2019). Such correlation can in-
flate inferences of compensation because any false positive esti-
mates of cis effects, leading to spurious calls of ASE, result in 
equal-but-opposite trans false positives to explain the absence 
of observed DE (Supplementary Note 2; Fraser 2019; Zhang and 
Emerson 2019).

Across strain pairs, 9–15% of the ASE-informative genes exhib-
ited expression differences in cis, trans, or a combination; roughly 
similar numbers of genes were regulated primarily in cis, primar-
ily in trans, or both in opposite directions indicating compensa-
tory regulation (Fig. 3b). As expected, the genes with no 
observed expression differences in the inheritance mode analysis 
were likewise classified as unchanged (“conserved”) or as compen-
satory in this analysis (Supplementary Fig. 5). Genes with expres-
sion differences driven solely in trans were much more likely to be 
inherited as dominant than as additive, and likewise genes with 

expression differences driven solely in cis were more likely than 
trans genes to be inherited additively. This trend makes sense, 
as a trans factor inherited from 1 parent can target alleles from 
both while a change in cis affects only the local allele (Lemos 
et al. 2008). However, many cis-regulated genes were also inher-
ited dominantly, as has been observed in other nematode species 
(Sanchez-Ramirez et al. 2021). While this result may reflect real 
biological mechanisms (Sanchez-Ramirez et al. 2021), we note 
that estimates of dominance may be inflated since the statistical 
threshold for additivity, which requires the intermediate F1 ex-
pression level to be distinct from both parents, is harder to achieve 
than that for dominance, which requires distinction from only 1 
parent.

The substantial fraction of genes exhibiting compensatory 
regulation (Fig. 3b) reflects the ubiquity of opposing cis and trans 
effects at the same individual genes. For example, of genes with 
detected ASE, i.e. evidence of gene regulation in cis, 44–51% 
were inferred to be partially or completely attenuated in trans, re-
sulting in no or reduced DE at the organismal level (Fig. 3c; 
Supplementary Fig. 6). This is a substantially higher overlap 

a b

c d

Fig. 2. Gene expression inheritance modes. a) For each cross, the inheritance mode of each gene was inferred by comparing DE between the F1 and their 
N2 parent (x axis) and DE between the F1 and their wild strain parent (y axis) (McManus et al. 2010). One point per analyzed gene, excluding 20 exceeding 
the axis limits. Supplementary Figure 2 shows this classification for all strains. b) Colors show the proportion of genes with each inheritance mode across 
strains (colors map to inheritance mode patterns as in a). Right: all genes; left: zoomed on genes with expression differences. Supplementary Table 2 has 
numbers (rather than proportions) of genes in each category in each strain cross. c) Gene set enrichment analysis results (Holdorf et al. 2020) for 
transgressively inherited underdominant genes, in which the F1 expression is lower than either parent, vs all analyzed genes. X axis ticks indicate all gene 
categories analyzed in this comparison; only significant enrichments are labeled (Bonferroni-adjusted P < 0.05). Supplementary Figure 3 shows gene set 
enrichment analysis results for all analyzed inheritance mode gene sets. d) An example of 2 collagen genes with underdominant expression in multiple 
strains. N2 parental gene expression is the same in each subplot (the same 3 N2 samples serve as the N2 parent for all strains). n = 45. Web app wildworm. 
biosci.gatech.edu/ase shows these plots and further information for any queried gene.
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than would be expected by chance if the probabilities of cis 
and trans effects were independent (FET, all P < 2 × 10−112, 
Supplementary Fig. 6). Moreover, of genes regulated in both 
cis and trans, opposing effects (the compensatory classes) 
dominated, comprising 88–94% of these genes. This significant 
excess of genes with cis–trans overlapping effects is unlikely to 
be artifactual: for this enrichment of compensatory effects not 
to be significant, 90% of these calls would need to be in error, 
meaning at least 40% of our ASE calls would have to be spurious 
(false positives) or 35% of DE calls would have had to have been 
missed (false negatives) (see also Supplementary Note 2). Such 
pervasive opposition between regulatory effects may reflect 
a history of stabilizing selection on gene expression levels 
(see ‘Discussion’).

We next considered whether the expression differences we ob-
served, and their modes of regulation, were common or idiosyn-
cratic across strains. As all crosses shared N2 as a parent, 
expression differences arising from derived changes in N2 are like-
ly to be shared; this is evidenced by the shared expression pattern 
at fog-2, which exhibited ASE in each cross (we deleted this sperm-
atogenesis gene from the N2 worms used to create the F1s, to fa-
cilitate obligate outcrossing, though we used wild-type N2 for 
sequencing this “parental” strain). Strain pairs showed consist-
ency in expression variation with respect to which genes exhibited 

any differences at all: 1,798 (85%) of shared informative genes had 
the same regulatory pattern at 6 or more strains and 1,480 (70%) at 
all 7 strains (Supplementary Table 3); most of these genes shared 
conserved expression. However, of genes with expression differ-
ences, 82 exhibited cis-dominant regulation in at least 1 strain 
and trans-dominant regulation in at least another strain, and 
109 genes exhibited uncompensated cis-driven expression 
changes in at least 1 strain that were compensated in at least 1 
other strain (Supplementary Table 3). While apparent differences 
among strains may be inflated by the statistical challenge of ob-
serving a given gene as significant in multiple crosses, the overall 
trend is that genes with expression differences were strain specif-
ic: of genes that were ASE-informative in all strains, a preponder-
ance (51.9%, 275 of 530) of those exhibiting ASE did so in only a 
single strain (Supplementary Fig. 7 and Supplementary Table 3). 
Genes with specific regulatory patterns tended not to be obviously 
associated with common biological categories across strains 
(Supplementary Fig. 8).

Expression variation increases with genomic 
divergence
C. elegans strains persist predominantly as selfing lineages, re-
sulting in the accumulation of genetic changes and a spectrum 
of genomic differentiation between more closely or more 

a b

c

Fig. 3. Gene expression regulatory patterns. a) The regulatory mode for each gene was inferred by comparing DE between the 2 parental strains (x axis) 
with ASE between the 2 alleles in the F1 (y axis) (McManus et al. 2010). One point per ASE-informative gene, excluding 10 exceeding the axis limits. 
Supplementary Figure 4 shows this classification for all strains. b) Colors show the proportion of genes with each regulatory pattern in each strain cross 
(colors map to regulatory patterns as in a). Right: all genes; left: zoomed on genes with expression differences. Supplementary Table 2 shows numbers 
(rather than proportions) of genes in each category in each strain. c) Relative to all genes, the subset of genes with regulatory differences in cis and in trans 
(in isolation or in combination), shown for strain ECA722; many more genes have both cis and trans effects than would be expected by chance if the 
effects are independent (hypergeometric/FET results in panel). Numbers show total number of genes in category inclusive of category-specific and 
overlapping genes. Supplementary Figure 6 shows this result for all strains.
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distantly related strains (Barriere and Felix 2005a; Barriere and 
Felix 2005b). We leveraged this aspect of C. elegans biology to as-
sess the relationship between genomic differentiation and gene 
expression variation, asking whether the proportion of genes 
with expression differences changes with genomic differenti-
ation. Overall, yes: for each strain, the proportion of genes 
with differences in expression scaled positively with genetic dis-
tance from N2 (Fig. 4).

This pattern persisted across all measures of expression 
variation: for genes exhibiting DE between strains (Fig. 4a), 
for genes by regulatory class (Fig. 4b–d; Supplementary Fig. 
9), and for genes by inheritance mode (Supplementary Fig. 
10), with weaker trends for the infrequently observed gene cat-
egories with less estimate precision. Considering all genes with 
evidence of differential regulation (all those not called con-
served), we estimate that increasing the number of genetic var-
iants by 100 thousand increases the proportion of variable 
expression genes by 1 percentage point (1%) (linear regression 
per 1,000 variants: β = 1.2 × 10−4, P = 0.004). This trend is not 
explained by the increased number of ASE-informative genes 
in more highly differentiated strains, as the estimates are spe-
cific to the ASE-informative genes for each strain (though see 
Supplementary Note 1).

Given that C. elegans live as independent lineages and show sig-
nificant outbreeding depression (Dolgin et al. 2007), we had hy-
pothesized that gene expression variation might plateau 
between the most diverged strains, as observed between species. 
For example, the nematode species C. briggsae and C. nigoni 
exhibit regulatory divergence at 82% of ASE-analyzed genes 
(Sanchez-Ramirez et al. 2021), which is 13.5-fold more expression 
differences than our most diverged C. elegans strain pair even as 
these sister species are 39-fold more diverged at the genome level 
(Thomas et al. 2015). However, here, gene expression differences 
scale with genomic differentiation and do not show any softening 
of the trend among the most diverged strains, as we might expect 
between incipient or distinct species.

Location, nucleotide diversity, and essentiality 
define genes with expression differences
To consider processes that may have shaped gene expression vari-
ation, we interrogated gene sets with different regulatory patterns 
for association with genomic location, nucleotide diversity me-
trics, and gene essentiality.

The C. elegans genome harbors extensive evidence of its recom-
bination history, with more recombination in the chromosome 
arms and less in chromosome centers (Rockman and Kruglyak 
2009): gene density tends to be higher in the centers while nucleo-
tide diversity is higher on arms (Rockman and Kruglyak 2009; 
Andersen et al. 2012). ASE-informative genes must have coding 
sequence polymorphisms; commensurately, they are enriched 
in chromosome arms and exhibit higher nucleotide diversity 
across all strains (Fig. 5a and b; Supplementary Figs. 11–13). 
However, even accounting for this background enrichment, 
genes with expression differences (in cis or trans) were more like-
ly to reside on chromosome arms than on centers (Fig. 5a; 
Supplementary Fig. 11). These trends held for all 7 strains and re-
inforce prior observations that genes variably expressed across 
wild C. elegans strains are more likely to reside in arms, as shown 
for DE (Denver et al. 2005) and as mapped as eQTLs by linkage 
(Rockman et al. 2010) or by association (Zhang et al. 2022). 
Relatedly, genes with expression differences showed an 
excess of polymorphism—beyond that which makes them 
ASE-informative—and were associated with both elevated 

genetic differences between the 2 parents (Supplementary Fig. 
12) and elevated nucleotide diversity across the species (Fig. 5c;
Supplementary Fig. 13). This trend parallels recent findings in hu-
mans that genes with higher variation in expression harbor more 
genetic polymorphism (Wolf et al. 2023). This trend likely reflects 
differences in historical selection, including the possibility of se-
lection relaxation (see ‘Discussion’); consistent with this, 
expression-stabilized genes exhibiting compensatory regulation 
with opposing cis and trans effects had lower nucleotide diversity 
and tended to be less enriched in chromosome arms, than non-
compensated genes, but not to the extent shown by genes with 
completely conserved expression (Fig. 5a–c).

The C. elegans genome shows evidence of selective sweeps, in 
which haplotypes comprising large portions of individual chromo-
somes have risen in frequency across the population (Andersen 
et al. 2012; Lee et al. 2021). A footprint of strong historical selection, 
these sweeps dominate the genomes of non-Hawaiian isolates 
and may underlie adaptation associated with the colonization of 
new habitats (Zhang et al. 2021). We hypothesized that swept hap-
lotypes are also associated with changes to gene expression. In our 
study, the non-Hawaiian strains N2 and EG4348 carry swept hap-
lotypes over 65 and 37% of their genomes, respectively; the other 
Hawaiian strains harbor no swept haplotypes (Lee et al. 2021). 
Therefore, all our F1s share swept haplotypes inherited from N2, 
and only F1s derived from EG4348 carry additional swept haplo-
types. Across strains, ASE-informative genes were less likely to 
reside in locations associated with N2 swept haplotypes (Fig. 5d;
Supplementary Fig. 14). However, genes with cis regulatory differ-
ences (ASE) and genes with expression differences (DE) were both 
more likely to reside in locations associated with sweeps in N2
(Fig. 5d; Supplementary Fig. 14). These expression differences 
may have helped drive shifts in allele frequency and facilitated 
adaptation as C. elegans lineages colonized new habitats (Zhang 
et al. 2021), though the actual targets of selection within the swept 
haplotypes are unknown. Genes with cis regulatory differences 
compensated in trans tended to be less likely to be associated 
with swept haplotypes, but these trends were not always 
statistically significant across strains and gene sets (Fig. 5d; 
Supplementary Fig. 14).

Next, we asked whether gene essentiality was associated 
with differences in expression. Essential genes, defined as those 
with an RNAi or allele phenotype leading to lethality or sterility 
(Sternberg et al. 2024), were significantly depleted among genes 
with any observed expression differences (ASE or DE), even as 
informative genes were enriched for essentiality (Fig. 5e; 
Supplementary Fig. 15). These results reinforce earlier findings 
that essential genes are depleted among eQTL genes (Rockman 
et al. 2010; Zhang et al. 2022) and parallel observations from hu-
mans that genes with less expression variability tend to be less 
tolerant of loss of heterozygosity (Wolf et al. 2023). However, 
genes with opposing effects in cis and trans tended not to be de-
pleted for essential genes (Fig. 5e; Supplementary Fig. 15). 
Essential genes are therefore likelier to have expression differ-
ences compensated by another mechanism, stabilizing their 
expression.

Genes with expression differences are 
less highly expressed
Finally, we examined the relationship between overall expression 
level and the tendency of genes to show expression differences. As 
higher expression enables the detection of significant differences, 
a positive association might arise as an artifact of the method; 
in fact, genes informative for ASE were higher expressed 
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than those not ASE-informative (Fig. 6a; Supplementary Fig. 16). 
Alternatively, a negative association between expression level 
and expression variation might reflect a phenomenon arising 
from biological function or evolutionary history.

Here, genes with expression differences tended to exhibit lower 
average expression: of ASE-informative genes, those with de-
tected ASE or DE were on average less expressed than those with-
out (Fig. 6b; Supplementary Fig. 16). Moreover, genes with no or 
reduced DE between strains because of cis–trans opposing effects 
exhibited intermediate expression levels, higher than uncompen-
sated genes with expression differences but lower than conserved 
expression genes (Fig. 6b; Supplementary Fig. 16). Because these 
genes with compensatory effects have higher expression than 
those with DE or uncompensated ASE, these calls are unlikely to 
be explained by missed DE calls or spurious ASE calls. To our 
knowledge, these are the first observations to explicitly demon-
strate a relationship between gene expression level and gene ex-
pression variation, though genes with higher expression tend to 
evolve more slowly over interspecific timescales (Pal et al. 2001; 
Krylov et al. 2003; Liao and Zhang 2006; Zhang and Yang 2015). 
Thus, our results may reflect, at the intraspecific level within C. 
elegans, evidence of the constraint that has been hypothesized to 
govern the anticorrelation between expression and evolutionary 
rate (Zhang and Yang 2015) (Discussion). Because this pattern 
was clear in each strain, it is likely a general feature of C. elegans 
gene expression rather than a strain-specific idiosyncrasy 
(Supplementary Fig. 16).

To evaluate whether this relationship between gene expression 
level and variability extended beyond C. elegans, we examined ex-
pression data from humans and D. melanogaster (Supplementary 
Fig. 17). For humans, we reanalyzed data from a meta-analysis 
of gene expression studies, comprising 57 studies with a median 
of 251 individuals included per study, which ultimately generating 
a robust across-study rank of mean expression and expression 
variance for each gene that encompassed variation driven by 
genotype and other sources (Wolf et al. 2023). In our analysis, 
more variably expressed human genes tended to be less 

expressed; the relationship is modest in magnitude but statistical-
ly significant (Supplementary Fig. 17a). For D. melanogaster, we re-
analyzed and carefully normalized data from a recent ASE study 
of intestinal tissues from 4 strain crosses (Glaser-Schmitt et al. 
2024). As we saw in C. elegans, D. melanogaster genes with compen-
satory cis–trans opposing effects as well as enhancing cis–trans 
effects had higher average expression than genes regulated only 
in cis, but trans effects were also elevated (Supplementary Fig. 
17b). How much of these similarities and differences derive from 
study-specific analysis pipelines vs species-specific evolution re-
main open questions.

The observation that differentially expressed genes have low-
er expression on average provides a platform for identifying po-
tentially important outliers: genes with very high expression 
that nonetheless have expression differences might be targets 
of strain-specific adaptive evolution. Of genes in the top 10% of 
gene expression, 9 had cis-regulated DE in 1 or more strains 
(Supplementary Table 4). Anecdotally, these genes reflect dom-
inant aspects of C. elegans biology: first, collagen genes col-8 and 
col-142 (Fig. 6c) are part of the extensive, epistatic network of 
genes coding for the collagen cuticle matrix. Second, vitello-
genin genes vit-3 (Fig. 6c) and vit-5 code for extremely highly ex-
pressed yolk proteins that dominate young adult C. elegans’ 
mRNA and protein generation (Perez and Lehner 2019) and 
whose gene products are even hypothesized to be used for off-
spring provisioning as a sort of “milk” (Kern et al. 2021). Third, 
rsd-6 (Fig. 6c) and deps-1 are involved in the P granule and 
piRNA processing (Grishok 2013; Sternberg et al. 2024). Such 
small RNA pathways predominate worm biology and exhibit re-
markable diversity in function and gene makeup across strains 
(Felix 2008; Youngman and Claycomb 2014; Chou et al. 2024). 
Although these genes exhibit similar high expression level and 
expression regulation, they are likely shaped by different evolu-
tionary histories. For example, rsd-6 is expressed at a lower level 
in all wild strains than in N2, suggesting an N2-specific mutation 
or function at this gene, while vit-3 exhibits a diversification of 
expression levels across strains.

a b c d

Fig. 4. Increasing expression variation with genomic divergence. For each wild strain, the proportion of genes exhibiting a given regulatory difference is 
plotted against the genetic distance from reference strain N2. a) DE between the wild strain and N2 at ASE-informative genes; b)–d) proportion of genes 
with specific regulatory patterns in each strain cross. Cis–trans opposing genes comprise compensating, compensatory, and overcompensating gene 
categories from Fig. 3a and b. All nonconserved expression regulatory patterns combined: correlation ρ = 0.89, P = 0.01. In all panels, error bars denote 
95% binomial C.I. of proportion and y-axis bounds are specific to the data shown. Supplementary Figure 9 shows proportion of each individual regulatory 
pattern category vs genetic distance from N2. Supplementary Figure 10 shows proportion of each individual inheritance mode vs genetic distance from 
N2. See Supplementary Table 2 for all gene ns.
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b c

d e

Fig. 5. Location, nucleotide diversity, haplotype, and essentiality differentiate expression diverged genes. The results shown here are for all strains 
combined (see ‘Materials and Methods’). See Supplementary Table 2 for all gene ns. a) Proportion of genes in each region of the chromosome (tip, arm, and 
center, denoted by alternating white and gray background) that have the described attribute. Supplementary Figure 11 shows similar data for all strains 
individually. b) and c) Average per-site nucleotide diversity, estimated species-wide from 300 + wild C. elegans strains, is shown for genes with various 
expression patterns. Each point represents 1 gene and points fill a violin plot; boxes denote median ± interquartile range. In c) (right), Tukey’s HSD on 
annotated ANOVA cis > conserved (P = 9.8 × 10−9); enhancing > conserved (P = 9.8 × 10−9); trans > conserved (P = 9.8 × 10−9); cis–trans opposing >  
conserved (P = 9.8 × 10−9); cis > trans (P = 9.8 × 10−9); cis > cis–trans opposing (P = 9.8 × 10−9), enhancing > trans (P = 4.5 × 10−5), enhancing > cis–trans 
opposing (P = 0.0003) (all P-values Bonferroni corrected; other comparisons nonsignificant). Supplementary Figure 12 shows pairwise, rather than 
population-wide, nucleotide diversity for all strains individually. Supplementary Figure 13 shows same population-wide nucleotide diversity data for all 
strains individually. d) For various expression characteristics of interest, bars show the proportion of genes in a region in which there is evidence of 
historical positive selection (selective sweep) in the N2 parent. Supplementary Figure 14 shows this breakdown for each strain individually. e) As in d), but 
each bar shows the proportion of genes in that category that are predicted to be essential in C. elegans. Supplementary Figure 15 shows this breakdown for 
each strain individually.
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Discussion
Main findings
Our study of intraspecific variation in gene expression included 
the first allele-specific analysis in C. elegans and elucidates the 
gene regulatory architecture of this system. We observed substan-
tial compensatory regulation, in which opposite effects in cis and 
trans at individual genes mitigate expression differences among 

strains. The most common gene expression pattern was one of 
no change and, while this majority gene set was well conserved 
among strains, genes with expression differences exhibited strain 
specificity and diversity in regulatory classification. We also re-
port for the first time that expression-variable genes are lower ex-
pressed on average than genes without expression differences. 
Additionally, the number of expression-variable genes between 
strains increased with genomic distance. In addition to these 

a b

c

Fig. 6. The relationship between expression level and expression variation. a), b) Results shown are for all strains combined (see ‘Materials and Methods’). 
Y axis denotes gene expression amount (length and library size normalized and variance stabilized, averaged across the 2 parental strains). Each point 
represents 1 gene and points inhabit a violin plot; boxes denote median ± interquartile range. See Supplementary Table 2 for all gene ns. In b) (right), 
ANOVA Tukey’s HSD conserved > cis (P = 9.6 × 10−9); conserved > trans (P = 9.6 × 10−9); conserved > cis–trans opposing (P = 9.6 × 10−9); cis > enhancing 
(P = 9.6 × 10−9), cis–trans opposing > cis (P = 9.6 × 10−9), trans > enhancing (P = 9.6 × 10−9), enhancing > cis–trans opposing (P = 0.014); (P = 9.6 × 10−9), cis– 
trans opposing > trans (P = 9.6 × 10−9), (all P-values Bonferroni corrected; other comparisons nonsignificant). Supplementary Figure 16 shows expression 
vs these various gene categories for all strains individually. c) Three example C. elegans genes with top 10% expression levels that nonetheless exhibit DE 
caused by cis regulatory divergence. Top: total gene expression for each sample. N2 samples are the same across plots/crosses. Bottom: within-sample 
allelic proportion from allelic counts. n = 3 per strain per generation (45 total). Web app wildworm.biosci.gatech.edu/ase shows these plots and further 
information for any queried gene.
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broad trends, we also highlighted genes with outlier expression 
patterns, such as collagen genes heavily enriched for transgres-
sive variation (Fig. 2d) and expression-variable genes with ex-
tremely high average expression (Fig. 6c).

The compensation of gene expression changes by cis–trans op-
posing interactions (Fig. 3) has been observed across the tree of 
life, though with varying degrees of quantitative characterization 
and control for methodological artifacts (Supplementary Note 2) 
(Goncalves et al. 2012; Coolon et al. 2014; Fear et al. 2016; Mack 
et al. 2016; Verta et al. 2016; Metzger et al. 2017; Fraser 2019; 
Zhang and Emerson 2019). While these interactions are often in-
terpreted as evidence for stabilizing selection on expression level, 
recent work in yeast has demonstrated how an initial mutation, 
by skewing the mutational target space, may predispose later mu-
tations to induce opposing, compensatory effects on gene expres-
sion (McQueen et al. 2025). Under this regime, compensatory 
changes may accumulate neutrally, providing an alternative ex-
planation for the significant excess of opposite effects relative to 
enhancing effects we observe in genes with changes in both cis 
and trans. Nevertheless, we found that genes exhibiting compen-
satory regulation were more likely to be essential than genes with 
uncompensated expression changes, suggesting stabilizing selec-
tion on expression. C. elegans may be especially prone to 
fitness-associated compensatory evolution due to extensive link-
age across the genome arising from its predominantly selfing 
mode of reproduction (Barriere and Felix 2005a; Barriere and 
Felix 2005b; Rockman and Kruglyak 2009): fitness in C. elegans is 
mediated by opposite-effect, closely linked regions of the genome 
(Bernstein et al. 2019), and compensatory regulatory elements are 
closely linked in self-fertilizing spruce trees (cis–trans) (Verta et al. 
2016) and yeast (trans–trans) (Metzger and Wittkopp 2019).

Our discovery that genes with expression differences tended to 
be expressed at lower levels (Fig. 6) may have been overlooked pre-
viously given that most studies control for the positive correlation 
between mean and variance in RNA quantification, discouraging 
investigation into the larger phenomenon. Indeed, breaking this 
relationship is difficult, which limited our ability to assess this 
phenomenon in published data from other systems. However, 
we did also see evidence of this trend in humans and D. melanoga-
ster (Supplementary Fig. 17). These sparse findings may relate to 
the more widely observed, and more thoroughly considered, phe-
nomenon in which highly expressed genes evolve at a slower evo-
lutionary rate (Pal et al. 2001; Krylov et al. 2003; Liao and Zhang 
2006; Zhang and Yang 2015). This expression-rate anticorrelation 
is universal across the domains of life and has been explained by a 
number of mechanisms independent of selection on biological es-
sentiality: avoidance of protein misfolding or mis-interaction, se-
lection on mRNA folding, and cost of protein expression (Zhang 
and Yang 2015). Very few studies have explicitly investigated 
this phenomenon over microevolutionary timescales, but venom 
protein expression in pit vipers evolves more slowly, i.e. is less 
variable, at higher levels (Margres et al. 2016), and higher ex-
pressed genes in yeast exhibit lower nucleotide polymorphism 
due to purifying selection directly targeting amino acid identity 
(Marek and Tomala 2018). We posit that our observed anticorrela-
tion of gene expression level and variability is likely a function of 
stabilizing selection on higher expressed genes in C. elegans, but 
the fitness-associated traits under selection may relate to the effi-
ciency or efficacy of gene products rather than, or in addition to, 
ultimate biological function. We also note that the mutations 
that define the expression-rate anticorrelation must arise within 
populations, and exploration of the question within a tractable ex-
perimental system enables tests of longstanding hypotheses 

about the driving mechanisms (Biesiadecka et al. 2020). Overall, 
the expression level-variability anticorrelation invites many 
questions, including whether it occurs as a common feature of 
heritable expression variation in most systems; whether it scales 
to interspecific differences in expression; whether and how it 
translates to other molecular phenotypes, such as the expression 
of proteins; and the proximate and evolutionary forces that 
govern it.

We found that as genomic differentiation between the wild 
strains and N2 increased, the proportion of genes with expression 
differences also increased (Fig. 4; see also Supplementary Note 1
for potential caveats). Such a trend is not necessarily to be ex-
pected: regulatory divergence has been observed to scale with 
genetic divergence among marine-freshwater ecotypes in stickle-
backs (Verta and Jones 2019) but to plateau at high genetic diver-
gence between yeast species (Metzger et al. 2017) and to not 
necessarily increase with divergence within and among 
Drosophila species, but to accelerate in particular crosses (Coolon 
et al. 2014). Though analyses of this relationship between genomic 
and regulatory divergence can shed light on the evolution of 
the genotype-phenotype map and the interplay between genetic 
variation, gene expression, and speciation (Orr 1995; Mack 
and Nachman 2017), it remains incompletely understood. 
Ultimately, this correlation must plateau at sufficient evolution-
ary distance, as genomic differences accumulate but not all genes 
show expression divergence; while 82% of genes exhibit regula-
tory divergence between sister species C. briggsae and C. nigoni 
(Sanchez-Ramirez et al. 2021), their genomic distance would 
need to be 2.9 times higher to scale with the trend we see within 
C. elegans. While it is difficult to directly compare ASE studies 
due to differences in experimental and analytical frameworks, 
we note similarities in the inheritance modes and regulatory 
patterns observed within C. elegans and between C. briggsae 
and C. nigoni, including the extent of compensatory regulation 
(Sanchez-Ramirez et al. 2021). The relationship between gene ex-
pression divergence and genomic divergence within C. elegans 
may offer an access point for deeper investigation within a highly 
tractable genetic system.

Consistent with earlier work testing the neutrality of C. elegans 
gene expression variation using mutation accumulation lines 
(Denver et al. 2005), our observations suggest that the majority 
of C. elegans genes may be under stabilizing selection for expres-
sion level. Genes with expression changes exhibit higher nucleo-
tide variation, lower average expression, and a depletion of 
essentiality, potentially reflecting a history of relaxed selection 
relative to genes with stabilized expression. This result also com-
ports with the observation that population structure estimated 
from gene expression data of 207 C. elegans wild strains is less dif-
ferentiated than that estimated from nucleotide data, suggesting 
possible stabilizing selection on expression relative to nucleotide 
differentiation (Zhang et al. 2022), and with a recent analysis 
that inferred stabilizing selection at most C. elegans transcripts 
(Inskeep and Groen 2025). However, in our results, genes with ex-
pression changes were also more likely to reside on chromosome 
arms than centers; this pattern may be explained in part by stron-
ger stabilizing selection on expression in center-located genes but 
is also likely shaped by background selection, which acts inde-
pendently of the expression phenotype of any individual gene 
(Rockman et al. 2010). Consequently, the role of stabilizing 
selection on expression phenotypes vs the indirect influence of 
background selection on reducing standing variation in chromo-
somal centers is not clear. Our observation that genes in chromo-
some centers show elevated compensation of expression 
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differences by cis–trans opposing effects (Fig. 5a) suggests that 
these may be direct targets of stabilizing selection.

We also observed evidence for adaptive evolution of gene ex-
pression variation. Namely, genes with expression differences 
were more likely to reside in locations at which the N2 haplotype 
experienced a selective sweep, which may include genes that fa-
cilitated adaptation during colonization of new habitats (Zhang 
et al. 2021). However, as in the case of background selection, 
such associations with genomic location do not distinguish be-
tween direct targets of selection and those indirectly targeted 
through linkage. Moreover, strain-specific changes in gene expres-
sion, even as they are associated with higher nucleotide diversity 
and other markers of relaxed selection, may instead reflect adap-
tive diversification; we cannot distinguish between these alterna-
tives. For genes involved in environmental sensitivity or immune 
response, for example, the lower expression of expression- 
variable genes may be mediated by the absence of pathogens or 
other inducible factors in the lab environment. Thus, genes with 
expression differences yet high average expression may be useful 
candidates for identifying fitness-associated traits governed by 
expression variation.

In our study, each wild strain was crossed to the common ref-
erence strain N2, so N2-specific differences such as laboratory- 
derived adaptations would likely show up as common differences 
across the strain set. We observed only a small number of genes 
with common differences across all wild strains; instead, many 
genes had expression differences only in a single wild strain 
(Supplementary Fig. 7 and Supplementary Table 3). Genes in the 
worm cuticle network exhibited both shared and strain-specific 
trends. For example, most wild strains showed transgressive ex-
pression at the same collagen genes (Fig. 2c–d), suggesting 
N2-specific differentiation. This result may relate to the derived 
mutation in col-182 in N2, which increases the phenotypic pene-
trance of classical lab mutations affecting cuticle phenotype 
(such as rol-1) that are suppressed in the ancestral background 
(Noble et al. 2020). However, strain XZ1516 and its F1s exhibited 
distinct collagen gene expression phenotypes, suggesting diver-
gent evolution in collagen or cuticle pathways along the XZ1516
lineage. The collagen gene network is especially large and com-
plex with evidence of accelerated adaptation (Cox et al. 1980; 
Kramer 1994; McMahon et al. 2003; Cutter and Ward 2005), fea-
tures that might facilitate lineage-specific changes arising from 
directional selection on function or from diversification under ei-
ther stabilizing or relaxed selection. Anecdotally, in our hands, 
XZ1516 was difficult to manipulate on the plate, which we hy-
pothesize may be due to a sensitive cuticle. Moreover, another 
wild strain, XZ1514, was so fragile that we refrained from using 
it in this study, suggesting potential further genetic differentiation 
in collagen function across C. elegans.

Comments about experimental system 
and design
Controlling for confounding variation poses a particular challenge 
in gene expression studies. For example, wild strains mature at 
different rates (Hodgkin and Doniach 1997; Gems and Riddle 
2000; Harvey and Viney 2007; Poullet et al. 2015; Stastna et al. 
2015; Zhang et al. 2021). We observed differences in developmen-
tal rate among our experimental strains, including that parental 
strain QX1211, and to a lesser extent XZ1516, its F1 with N2, and 
the N2 parent, developed more slowly than other strains 
(Supplementary Table 1). While most F1 offspring developed at 
a rate similar to 1 parent or intermediate between the parents, 
the F1 offspring of QX1211 and N2 reached young adulthood 

over an hour faster than either parent (Supplementary Table 1). 
To reduce the influence of developmental variation on gene ex-
pression differences, we harvested worms at a consistent develop-
mental stage rather than a consistent chronological age, 
nevertheless all within 3 h of one another (see ‘Materials and 
Methods’). Further, we estimated the transcriptional age of each 
sample using an N2 gene expression time course as a “ruler” 
(Bulteau and Francesconi 2022); all estimates fell within a 5.5-h 
time range (Supplementary Table 1). These computational esti-
mates differed across samples within strains even though such 
samples appeared identical and were harvested at the same 
time, suggesting further work is needed to understand discord-
ance between experimental observations and computational pre-
dictions as well as interindividual timing variation. While these 
measures control for developmental differences as much as is ex-
perimentally tractable, they do not guarantee the elimination of 
confounding developmental variation at the level of the whole or-
ganism or in tissue- or process-specific events. Thus, conclusions 
around specific genes should be considered carefully; for ex-
ample, small differences in fertilization timing might contribute 
to substantial differences in the highly expressed vitellogenin 
genes (Fig. 6c).

In this study, we chose the number of strains to maximize the 
range of genetic diversity while performing crosses simultaneous-
ly in triplicate. Maximizing the number of strains did restrict the 
direction of the crosses, however: we always used N2 as the ma-
ternal parent and did not include reciprocal crosses to reduce 
the burden of effort. The nonreciprocal cross design thus limits in-
ferences about parent-specific transgenerational effects or sex- 
specific gene regulation, which have biological significance in 
other Caenorhabditis nematodes (Sanchez-Ramirez et al. 2021; 
Viswanath and Cutter 2023). For the same reason, we generated 
the parental strains via selfing rather than by crossing, while the 
F1s were obligately generated by crossing; these differences in re-
productive mode may conflate with differences between F1s and 
parents, though we are unaware of any such broad effects on 
gene expression. An analytical concern with using multiple, vari-
ably diverged strains is whether ASE inferences could be standar-
dized across strains. In theory, different strains could be 
differently vulnerable to reference genome bias or could exhibit 
increasing power to detect ASE with increasing variants within a 
given gene. However, the methods used here largely avoid these 
pitfalls (Fig. 1d; Supplementary Note 1).

Our inferences in this study, including expression classifica-
tions and trends between differently regulated genes, were robust 
to the inclusion or exclusion of genes in hyperdivergent haplo-
types (Lee et al. 2021). Hyperdivergent regions differ substantially 
from the N2 reference sequence, making alignment and variant 
calling from short-read data unreliable (Lee et al. 2021; Moya 
et al. 2025); recent RNA-seq studies in C. elegans sensibly and con-
servatively exclude genes in these regions (Lee et al. 2021; Zhang 
et al. 2022). However, our recent gene expression analyses showed 
that genome-wide trends appear robust to including or excluding 
genes in hyperdivergent haplotypes (Bell et al. 2023). Therefore, 
here we performed each of our genome-wide analyses both in-
cluding all genes and excluding genes classified as hyperdivergent 
as well as genes with evidence of other possible analytical hurdles 
(see ‘Materials and Methods’). The vast majority of trends detected 
when all genes were included were recapitulated when excluding 
hyperdivergent genes. We note, though, that results at individual 
genes are still likely to be influenced by genomic context, so these 
features should be considered when assessing small numbers of 
genes or conducting gene-specific queries. For example, our 
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gene set enrichment analysis results (Fig. 2d; Supplementary Figs. 
3 and 8) were similar when including or excluding hyperdivergent 
genes, and whenever specific genes were used as exemplars of 
trends these genes were not hyperdivergent or otherwise concern-
ing (e.g. Figs. 2d and 6c).

In this study, we focused on global, large-scale patterns in 
gene-level expression and did not quantify specific isoforms. 
However, recent evidence and common sense suggest that wild 
strains differ in expression of specific transcripts (Zhang et al. 
2022). The extent to which nonreference strains express novel 
isoforms and how F1 cross progeny mediate the expression of 
parent-specific isoforms remain unexplored questions. A particu-
larly intriguing possibility is that transgressive isoforms could be 
expressed in F1 heterozygous backgrounds but not in their native 
background, akin to cis regulatory changes that are revealed in 
hybrids but compensated among the parents.

Interactive web application
Our experimental approach had many advantages, among them 
our study organism: the wealth of experimental data in C. elegans 
and its curation and accessibility via WormBase (Sternberg et al. 
2024) makes this system especially amenable to analyses that 
add new molecular detail to existing experimental phenotypes. 
In turn, our characterization of gene expression variation im-
proves our understanding of C. elegans and the processes that 
shape gene expression in this system. To aid in future genetics, 
trait mapping, and other C. elegans research, we have made the 
data from this study accessible via an interactive web application, 
where users can query their favorite gene to view its expression, 
regulatory pattern, inheritance mode, and other information: 
https://wildworm.biosci.gatech.edu/ase/.

Data availability
Raw and processed gene expression data are available at GEO with 
accession number GSE272616. Per-gene per-strain data (used to 
perform all analyses and generate all figures), including regula-
tory pattern and inheritance mode classifications and underlying 
statistical DE results, are available via the Zenodo repository at 
https://doi.org/10.5281/zenodo.13270636. Per-gene information is 
interactively available via user query at web app https:// 
wildworm.biosci.gatech.edu/ase/. Code used in this study’s data 
processing and analysis is available at https://github.com/ 
paabylab/wormase. Materials and methods fully describe all ex-
isting and new software and analyses used in this study.

Supplemental material available at GENETICS online.
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